Serveur d'exploration sur les peptides biopesticides

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Peroxisome proliferator-activated receptor gamma-independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress.

Identifieur interne : 003371 ( Main/Exploration ); précédent : 003370; suivant : 003372

Peroxisome proliferator-activated receptor gamma-independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress.

Auteurs : Olivia S. Gardner [États-Unis] ; Chung-Wai Shiau ; Ching-Shih Chen ; Lee M. Graves

Source :

RBID : pubmed:15649892

Descripteurs français

English descriptors

Abstract

The thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPARgamma) ligands that promote increased insulin sensitivity in type II diabetic patients. In addition to their ability to improve glucose homeostasis, TZDs also exert anti-proliferative effects by a mechanism that is unclear. Our laboratory has shown that two TZDs, ciglitazone and troglitazone, rapidly induce calcium-dependent p38 mitogen-activated protein kinase (MAPK) phosphorylation in liver epithelial cells. Here, we further characterize the mechanism responsible for p38 MAPK activation by PPARgamma ligands and correlate this with the induction of endoplasmic reticulum (ER) stress. Specifically, we show that TZDs rapidly activate the ER stress-responsive pancreatic eukaryotic initiation factor 2alpha (eIF2alpha) kinase or PKR (double-stranded RNA-activated protein kinase)-like endoplasmic reticulum kinase/pancreatic eIF2alpha kinase, and that activation of these kinases is correlated with subsequent eIF2alpha phosphorylation. Interestingly, PPARgamma ligands not only activated calcium/calmodulin-dependent kinase II (CaMKII) 2-fold over control, but the selective CaMKII inhibitor, KN-93, attenuated MKK3/6 and p38 as well as PKR and eIF2alpha phosphorylation. Although CaMKII was not affected by inhibition of PKR with 2-aminopurine, phosphorylation of MKK3/6 and p38 as well as eIF2alpha were significantly reduced. Collectively, these data provide evidence that CaMKII is a regulator of PKR-dependent p38 and eIF2alpha phosphorylation in response to ER calcium depletion by TZDs. Furthermore, using structural derivatives of TZDs that lack PPARgamma ligand-binding activity as well as a PPARgamma antagonist, we show that activation of these kinase signaling pathways is PPARgamma-independent.

DOI: 10.1074/jbc.M410445200
PubMed: 15649892


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peroxisome proliferator-activated receptor gamma-independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress.</title>
<author>
<name sortKey="Gardner, Olivia S" sort="Gardner, Olivia S" uniqKey="Gardner O" first="Olivia S" last="Gardner">Olivia S. Gardner</name>
<affiliation wicri:level="4">
<nlm:affiliation>Curriculum in Toxicology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Curriculum in Toxicology, University of North Carolina at Chapel Hill, North Carolina, 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shiau, Chung Wai" sort="Shiau, Chung Wai" uniqKey="Shiau C" first="Chung-Wai" last="Shiau">Chung-Wai Shiau</name>
</author>
<author>
<name sortKey="Chen, Ching Shih" sort="Chen, Ching Shih" uniqKey="Chen C" first="Ching-Shih" last="Chen">Ching-Shih Chen</name>
</author>
<author>
<name sortKey="Graves, Lee M" sort="Graves, Lee M" uniqKey="Graves L" first="Lee M" last="Graves">Lee M. Graves</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15649892</idno>
<idno type="pmid">15649892</idno>
<idno type="doi">10.1074/jbc.M410445200</idno>
<idno type="wicri:Area/Main/Corpus">003495</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003495</idno>
<idno type="wicri:Area/Main/Curation">003495</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003495</idno>
<idno type="wicri:Area/Main/Exploration">003495</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Peroxisome proliferator-activated receptor gamma-independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress.</title>
<author>
<name sortKey="Gardner, Olivia S" sort="Gardner, Olivia S" uniqKey="Gardner O" first="Olivia S" last="Gardner">Olivia S. Gardner</name>
<affiliation wicri:level="4">
<nlm:affiliation>Curriculum in Toxicology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Curriculum in Toxicology, University of North Carolina at Chapel Hill, North Carolina, 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shiau, Chung Wai" sort="Shiau, Chung Wai" uniqKey="Shiau C" first="Chung-Wai" last="Shiau">Chung-Wai Shiau</name>
</author>
<author>
<name sortKey="Chen, Ching Shih" sort="Chen, Ching Shih" uniqKey="Chen C" first="Ching-Shih" last="Chen">Ching-Shih Chen</name>
</author>
<author>
<name sortKey="Graves, Lee M" sort="Graves, Lee M" uniqKey="Graves L" first="Lee M" last="Graves">Lee M. Graves</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antineoplastic Agents (pharmacology)</term>
<term>Benzylamines (metabolism)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2 (MeSH)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinases (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Chromans (pharmacology)</term>
<term>Culture Media, Serum-Free (pharmacology)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Epithelial Cells (cytology)</term>
<term>Immunoblotting (MeSH)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Liver (cytology)</term>
<term>MAP Kinase Kinase 3 (metabolism)</term>
<term>MAP Kinase Kinase 6 (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Chemical (MeSH)</term>
<term>PPAR gamma (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sulfonamides (metabolism)</term>
<term>Thiazolidinediones (metabolism)</term>
<term>Thiazolidinediones (pharmacology)</term>
<term>Time Factors (MeSH)</term>
<term>Troglitazone (MeSH)</term>
<term>eIF-2 Kinase (metabolism)</term>
<term>p38 Mitogen-Activated Protein Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Antinéoplasiques (pharmacologie)</term>
<term>Benzylamines (métabolisme)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2 (MeSH)</term>
<term>Calcium-Calmodulin-Dependent Protein Kinases (métabolisme)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cellules épithéliales (cytologie)</term>
<term>Chromanes (pharmacologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Foie (cytologie)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Immunotransfert (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>MAP Kinase Kinase 3 (métabolisme)</term>
<term>MAP Kinase Kinase 6 (métabolisme)</term>
<term>Milieux de culture sans sérum (pharmacologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Récepteur PPAR gamma (métabolisme)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Sulfonamides (métabolisme)</term>
<term>Thiazolidinediones (métabolisme)</term>
<term>Thiazolidinediones (pharmacologie)</term>
<term>Transduction du signal (MeSH)</term>
<term>Troglitazone (MeSH)</term>
<term>eIF-2 Kinase (métabolisme)</term>
<term>p38 Mitogen-Activated Protein Kinases (métabolisme)</term>
<term>Électrophorèse sur gel de polyacrylamide (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzylamines</term>
<term>Calcium-Calmodulin-Dependent Protein Kinases</term>
<term>MAP Kinase Kinase 3</term>
<term>MAP Kinase Kinase 6</term>
<term>PPAR gamma</term>
<term>Sulfonamides</term>
<term>Thiazolidinediones</term>
<term>eIF-2 Kinase</term>
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Chromans</term>
<term>Culture Media, Serum-Free</term>
<term>Thiazolidinediones</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Foie</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Epithelial Cells</term>
<term>Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Benzylamines</term>
<term>Calcium-Calmodulin-Dependent Protein Kinases</term>
<term>MAP Kinase Kinase 3</term>
<term>MAP Kinase Kinase 6</term>
<term>Récepteur PPAR gamma</term>
<term>Réticulum endoplasmique</term>
<term>Sulfonamides</term>
<term>Thiazolidinediones</term>
<term>eIF-2 Kinase</term>
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antinéoplasiques</term>
<term>Chromanes</term>
<term>Milieux de culture sans sérum</term>
<term>Thiazolidinediones</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2</term>
<term>Cells, Cultured</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Enzyme Activation</term>
<term>Immunoblotting</term>
<term>Immunoprecipitation</term>
<term>Ligands</term>
<term>Models, Biological</term>
<term>Models, Chemical</term>
<term>Phosphorylation</term>
<term>Protein Binding</term>
<term>Rats</term>
<term>Signal Transduction</term>
<term>Time Factors</term>
<term>Troglitazone</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Calcium-Calmodulin-Dependent Protein Kinase Type 2</term>
<term>Cellules cultivées</term>
<term>Facteurs temps</term>
<term>Immunoprécipitation</term>
<term>Immunotransfert</term>
<term>Liaison aux protéines</term>
<term>Ligands</term>
<term>Modèles biologiques</term>
<term>Modèles chimiques</term>
<term>Phosphorylation</term>
<term>Rats</term>
<term>Transduction du signal</term>
<term>Troglitazone</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPARgamma) ligands that promote increased insulin sensitivity in type II diabetic patients. In addition to their ability to improve glucose homeostasis, TZDs also exert anti-proliferative effects by a mechanism that is unclear. Our laboratory has shown that two TZDs, ciglitazone and troglitazone, rapidly induce calcium-dependent p38 mitogen-activated protein kinase (MAPK) phosphorylation in liver epithelial cells. Here, we further characterize the mechanism responsible for p38 MAPK activation by PPARgamma ligands and correlate this with the induction of endoplasmic reticulum (ER) stress. Specifically, we show that TZDs rapidly activate the ER stress-responsive pancreatic eukaryotic initiation factor 2alpha (eIF2alpha) kinase or PKR (double-stranded RNA-activated protein kinase)-like endoplasmic reticulum kinase/pancreatic eIF2alpha kinase, and that activation of these kinases is correlated with subsequent eIF2alpha phosphorylation. Interestingly, PPARgamma ligands not only activated calcium/calmodulin-dependent kinase II (CaMKII) 2-fold over control, but the selective CaMKII inhibitor, KN-93, attenuated MKK3/6 and p38 as well as PKR and eIF2alpha phosphorylation. Although CaMKII was not affected by inhibition of PKR with 2-aminopurine, phosphorylation of MKK3/6 and p38 as well as eIF2alpha were significantly reduced. Collectively, these data provide evidence that CaMKII is a regulator of PKR-dependent p38 and eIF2alpha phosphorylation in response to ER calcium depletion by TZDs. Furthermore, using structural derivatives of TZDs that lack PPARgamma ligand-binding activity as well as a PPARgamma antagonist, we show that activation of these kinase signaling pathways is PPARgamma-independent.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15649892</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>04</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>280</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2005</Year>
<Month>Mar</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Peroxisome proliferator-activated receptor gamma-independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress.</ArticleTitle>
<Pagination>
<MedlinePgn>10109-18</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPARgamma) ligands that promote increased insulin sensitivity in type II diabetic patients. In addition to their ability to improve glucose homeostasis, TZDs also exert anti-proliferative effects by a mechanism that is unclear. Our laboratory has shown that two TZDs, ciglitazone and troglitazone, rapidly induce calcium-dependent p38 mitogen-activated protein kinase (MAPK) phosphorylation in liver epithelial cells. Here, we further characterize the mechanism responsible for p38 MAPK activation by PPARgamma ligands and correlate this with the induction of endoplasmic reticulum (ER) stress. Specifically, we show that TZDs rapidly activate the ER stress-responsive pancreatic eukaryotic initiation factor 2alpha (eIF2alpha) kinase or PKR (double-stranded RNA-activated protein kinase)-like endoplasmic reticulum kinase/pancreatic eIF2alpha kinase, and that activation of these kinases is correlated with subsequent eIF2alpha phosphorylation. Interestingly, PPARgamma ligands not only activated calcium/calmodulin-dependent kinase II (CaMKII) 2-fold over control, but the selective CaMKII inhibitor, KN-93, attenuated MKK3/6 and p38 as well as PKR and eIF2alpha phosphorylation. Although CaMKII was not affected by inhibition of PKR with 2-aminopurine, phosphorylation of MKK3/6 and p38 as well as eIF2alpha were significantly reduced. Collectively, these data provide evidence that CaMKII is a regulator of PKR-dependent p38 and eIF2alpha phosphorylation in response to ER calcium depletion by TZDs. Furthermore, using structural derivatives of TZDs that lack PPARgamma ligand-binding activity as well as a PPARgamma antagonist, we show that activation of these kinase signaling pathways is PPARgamma-independent.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gardner</LastName>
<ForeName>Olivia S</ForeName>
<Initials>OS</Initials>
<AffiliationInfo>
<Affiliation>Curriculum in Toxicology, University of North Carolina at Chapel Hill, North Carolina, 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shiau</LastName>
<ForeName>Chung-Wai</ForeName>
<Initials>CW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Ching-Shih</ForeName>
<Initials>CS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Graves</LastName>
<ForeName>Lee M</ForeName>
<Initials>LM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>01</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000970">Antineoplastic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001596">Benzylamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002839">Chromans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016895">Culture Media, Serum-Free</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047495">PPAR gamma</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013449">Sulfonamides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045162">Thiazolidinediones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>139298-40-1</RegistryNumber>
<NameOfSubstance UI="C072105">KN 93</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AA68LXK93C</RegistryNumber>
<NameOfSubstance UI="C089946">2,4-thiazolidinedione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D019892">eIF-2 Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.17</RegistryNumber>
<NameOfSubstance UI="D054732">Calcium-Calmodulin-Dependent Protein Kinase Type 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.17</RegistryNumber>
<NameOfSubstance UI="D017871">Calcium-Calmodulin-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048051">p38 Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.2</RegistryNumber>
<NameOfSubstance UI="D048371">MAP Kinase Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.2</RegistryNumber>
<NameOfSubstance UI="D048669">MAP Kinase Kinase 6</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.2</RegistryNumber>
<NameOfSubstance UI="C482566">MAP2K6 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>I66ZZ0ZN0E</RegistryNumber>
<NameOfSubstance UI="D000077288">Troglitazone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U8QXS1WU8G</RegistryNumber>
<NameOfSubstance UI="C039671">ciglitazone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000970" MajorTopicYN="N">Antineoplastic Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001596" MajorTopicYN="N">Benzylamines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054732" MajorTopicYN="N">Calcium-Calmodulin-Dependent Protein Kinase Type 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017871" MajorTopicYN="N">Calcium-Calmodulin-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002839" MajorTopicYN="N">Chromans</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016895" MajorTopicYN="N">Culture Media, Serum-Free</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015151" MajorTopicYN="N">Immunoblotting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008099" MajorTopicYN="N">Liver</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048371" MajorTopicYN="N">MAP Kinase Kinase 3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048669" MajorTopicYN="N">MAP Kinase Kinase 6</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047495" MajorTopicYN="N">PPAR gamma</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013449" MajorTopicYN="N">Sulfonamides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045162" MajorTopicYN="N">Thiazolidinediones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000077288" MajorTopicYN="N">Troglitazone</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019892" MajorTopicYN="N">eIF-2 Kinase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048051" MajorTopicYN="N">p38 Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NASA">
<Keyword MajorTopicYN="N">Non-programmatic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15649892</ArticleId>
<ArticleId IdType="pii">M410445200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M410445200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Ching Shih" sort="Chen, Ching Shih" uniqKey="Chen C" first="Ching-Shih" last="Chen">Ching-Shih Chen</name>
<name sortKey="Graves, Lee M" sort="Graves, Lee M" uniqKey="Graves L" first="Lee M" last="Graves">Lee M. Graves</name>
<name sortKey="Shiau, Chung Wai" sort="Shiau, Chung Wai" uniqKey="Shiau C" first="Chung-Wai" last="Shiau">Chung-Wai Shiau</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Gardner, Olivia S" sort="Gardner, Olivia S" uniqKey="Gardner O" first="Olivia S" last="Gardner">Olivia S. Gardner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/BiopestPeptidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003371 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003371 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    BiopestPeptidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15649892
   |texte=   Peroxisome proliferator-activated receptor gamma-independent activation of p38 MAPK by thiazolidinediones involves calcium/calmodulin-dependent protein kinase II and protein kinase R: correlation with endoplasmic reticulum stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15649892" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a BiopestPeptidV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 19:22:35 2020. Site generation: Thu Nov 19 19:33:26 2020